David Fitzpatrick, PhD

David Fitzpatrick, PhD

Chief Executive Officer, Research Group Leader, Scientific Director
Functional Architecture and Development of Cerebral Cortex

One Max Planck Way
Jupiter, FL 33458
(561) 972-9000

Visit David Fitzpatrick's Lab Website

Researcher Bio

Dr. Fitzpatrick was named Chief Executive Officer and Scientific Director of the Max Planck Florida Institute on January 3, 2011. Prior to his arrival in Jupiter, Dr. Fitzpatrick was the James B. Duke Professor of Neurobiology at the Duke University School of Medicine, Durham, NC, and Director of the Duke Institute for Brain Sciences. His scientific contributions have earned him international recognition as a leader in systems neuroscience, with a focus on the functional organization and development of neural circuits in the cerebral cortex — the largest and most complex area of the brain, whose functions include sensory perception, motor control, and cognition.

Dr. Fitzpatrick’s research has played a pivotal role in defining the functional organization of cortical circuits, exploring rules of intracortical connectivity, addressing mechanisms of neural coding, and probing the role of experience in the maturation of cortical circuits. His current research utilizes state-of-the-art in vivo imaging techniques to probe the functional synaptic architecture of circuits in primary visual cortex, defining the circuit mechanisms that build the selective response properties of cortical neurons and the critical role that neural activity plays in the proper maturation of these circuits.

Research Interests

  • Neural basis of visual perception
  • Functional organization of cortical circuits
  • In vivo imaging of neural activity from columns to synapses
  • Activity-dependent development of cortical networks

Education

  • PhD, Duke University, Psychology/Neuroscience (1982)
  • BS, Pennsylvania State University, Biology (1974)

 

 

Selected Publications

  1. Dimidschstein, J., Chen, Q., Tremblay , R., Rogers, S., Saldi, G., Guo, L., Xu, Q.,Liu, R., Lu, C., Chu, J., Avery, M., Rashid, M., Smith, G.B., Wilson, D., Kosche, G., Kruglikov, I., Rusielewicz, T., Kotak, V., Mowery, T., Anderson, S., Callaway, E., Fitzpatrick, D., Fossati, V., Long, M., Noggle, S., Reynolds, J., Sanes, D., Rudy, B., Feng, G. and Fishell, G. (2016) Targeting and manipulating interneurons across vertebrate species. Nat. Neurosci. Advance Online publication.

  2. Smith, G.B., and Fitzpatrick, D. (2016). Viral Injection and Cranial Window Implantation for In Vivo Two-Photon Imaging. Methods Mol. Biol. 1474, 171–185.

  3. Wilson, D.E., Whitney, D.E., Scholl, B., and Fitzpatrick, D. (2016). Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nature Neuroscience, 19, 1003-1009.

  4. Lee, K-S., Huang, X., Fitzpatrick, D. (2016) Topology of ON and OFF inputs in visual cortex enables an invariant columnar architecture. Nature 533, 90–94.

  5. Wallace, D.J., Fitzpatrick, D., and Kerr, J.N.D. (2016). Primate Thalamus: More Than Meets an Eye. Curr. Biol. CB 26, R60–R61

  6. Smith G.D., Whitney D, Fitzpatrick D. (2015) Modular Representation of Luminance Polarity in the Superficial Layers of Primary Visual Cortex. Neuron, Volume 88 , Issue 4 , 805 – 818.

  7. Lee, K-S., Huang, X., Fitzpatrick, D. (2015). ON and OFF subfield organization of layer 2/3 neurons in tree shrew visual cortex. J.Vis 15, 990-990.

  8. Smith, G.B., Sederberg, A., Elyada, Y.M., Van Hooser, S.D., Kaschube, M., and Fitzpatrick, D. (2015) The development of cortical circuits for motion discrimination. Nat. Neurosci. 18, 252–261.

  9. Huang, X, Elyada, Y.M., Bosking, W.H., Walker, T, Fitzpatrick, D. (2014) Optogenetic assessment of horizontal interactions in primary visual cortex. J. Neurosci. 34(14):4976-4990.

  10. Van Hooser, S.D., Roy, A., Rhodes, H.J., Culp, J.H., Fitzpatrick, D. (2013) Transformation of Receptive Field Properties from Lateral Geniculate Nucleus to Superficial V1 in the Tree Shrew. J. Neurosci. 33(28):11494–11505

  11. Smith GB, Fitzpatrick D. (2012) Specifying cortical circuits: a role for cell lineage. Neuron. 75(1):4-5.

  12. Van Hooser, S.D., Li, Y., Christensson, M., Smith, G., White, L.E., Fitzpatrick, D. (2012) Initial Neighborhood Biases and the Quality of Motion Stimulation Jointly Influence the Rapid Emergence of Direction Preference in Visual Cortex. J. Neurosci. 32(21):7258-7266.

  13. Wu, W., Tiesinga, P.H., Tucker, T.R., Mitroff, S.R., Fitzpatrick, D. (2011) Dynamics of Population Response to Changes of Motion Direction in Primary Visual Cortex. J. Neurosci. 31:(36).

  14. Johnson, EN, Van Hooser, SD, Fitzpatrick, D. (2010) Representation of S-cone signals in primary visual cortex. J Neurosci. 30:10337-50.

  15. MacEvoy SP, Tucker T, Fitzpatrick D. (2009) A precise form of divisive suppression supports population coding in primary visual cortex. Nature Neurosci. 12:637-645.

  16. Li Y, Van Hooser SD, Mazurek M, White LE, Fitzpatrick D. (2008) Experience with moving visual stimuli drives the early development of cortical direction selectivity. Nature, 456:952-6.

  17. White, LE and D. Fitzpatrick (2007) Vision and cortical map development. Neuron 56: 327-338.

  18. Tucker T., and D. Fitzpatrick (2006) Luminance-evoked inhibition in primary visual cortex: a transient veto of simultaneous and ongoing response. J Neurosci. 26:13537-13547.

  19. Li Y, Fitzpatrick D, White LE. (2006) The development of direction selectivity in ferret visual cortex requires early visual experience. Nat Neurosci. 9(5):676-681.

  20. Xu X, Bosking WH, White LE, Fitzpatrick D, Casagrande VA. (2005) Functional organization of visual cortex in the prosimian bush baby revealed by optical imaging of intrinsic signals. J Neurophysiol. 94(4):2748-2762

  21. Mooser, F., Bosking, W.H., and D. Fitzpatrick (2004) A morphological basis for orientation tuning in primary visual cortex. Nature Neurosci. 8: 872-879.

  22. Chisum, H.J., Mooser, F. and D. Fitzpatrick (2003) Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. J. Neurosci. 23:2947-2960.

  23. Basole, A., White, L.E. and Fitzpatrick, D. (2003) Mapping multiple features in the population response of visual cortex. Nature 423:986-990.

  24. Bosking, W.H., J.C. Crowley and D. Fitzpatrick (2002) Spatial coding of position and orientation in primary visual cortex. Nature Neurosci. 5:874-882.

  25. White, L.E., D.M. Coppola, and D. Fitzpatrick (2001) The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex. Nature 411: 1049-1052.

  26. White LE, Bosking WH, Fitzpatrick D. (2001) Consistent mapping of orientation preference across irregular functional domains in ferret visual cortex. Vis Neurosci. 18(1):65-76.

  27. Bosking, W.H., R. Kretz, M.L. Pucak and D. Fitzpatrick (2000) Functional specificity of callosal connections in tree shrew striate cortex. J. Neurosci. 20:2346-2359.

  28. White LE, Bosking WH, Williams SM, Fitzpatrick D. (1999) Maps of central visual space in ferret V1 and V2 lack matching input from the two eyes. J Neurosci. 19(16):7089-7099.

  29. Coppola DM, White LE, Fitzpatrick D, Purves D. (1998) Unequal representation of cardinal and oblique contours in ferret visual cortex. Proc Natl Acad Sci USA. 95(5):2621-2623.

  30. Bosking, W., Y. Zhang, B. Schofield, D. Fitzpatrick (1997) Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17: 2112-2127.

  31. Weliky, M., W. Bosking and D. Fitzpatrick (1996) A systematic map of direction preference in primary visual cortex. Nature. 379: 725-728.

  32. Usrey, W.M. and D. Fitzpatrick (1996). Specificity in the axonal connections of layer VI neurons in tree shrew striate cortex: Evidence for separate granular and supragranular systems. J. Neurosci. 16: 1203-1218.

  33. Weliky, M., K. Kandler, D. Fitzpatrick and L. C. Katz (1995) Patterns of excitation and inhibition evoked by horizontal connections in visual cortex share a common relationship to orientation columns. Neuron 15: 541-552.